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1. Introduction
We envision a future scenario where robotic agents

working in diverse and private environments help a new
agent in an unknown environment to learn its policy effi-
ciently. For instance, imagine various types of pick-and-
place robotic agents working in a factory. While the agents
are involved in the same task, dynamics of the environment
in which the task is performed is different based on each
robot’s kinematics (e.g., degree of freedom, link length, and
joint orientations) and dynamics (e.g., joint damping, ar-
mature, and friction) [1]. Moreover, no prior knowledge
about the dynamics of environments as well as the specifi-
cation of agents policies can be available for a new agent
due to the confidentiality of products and processes in the
factory. Other relevant scenarios include autonomous ve-
hicles on private land and home assistants interacting with
people privately.

The problem setting shown above makes it hard to adopt
many existing approaches for efficient learning of a target
agent’s policy. For instance, meta-learning approaches typ-
ically require an agent to be trained on a diverse task distri-
bution [4], which is not possible here due to the privacy of
environments. Also, existing transfer learning approaches
that focus on the transfer of policies between dynamics, re-
quire prior information about the environments [1] or pol-
icy configuration (e.g., actor network weights and agent’s
value function [2]) which are both unavailable.

In such scenarios, we argue that the target agent can get
information from other private agents through their poli-
cies (hereafter source policies) that act as a black-box func-
tion mapping states to actions. Specifically, we propose a
new sample efficient approach named MULTI-source POL-
icy AggRegation (MULTIPOLAR). Much like a multipolar
neuron that can integrate information coming from other
neurons, our MULTIPOLAR aggregates the actions pro-
duced by the source policies to serve a robust baseline ac-
tion. It also learns an additional policy to predict a ‘residual’
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Figure 1: The proposed MULTIPOLAR policy network.

around the baseline actions to mitigate the unseen dynamics
of the target agent’s environment. As a result, MULTIPO-
LAR achieves training sample efficiency since the aggrega-
tion of source actions provides a strong inductive bias.

As a preliminary experiment, we evaluate MULTIPO-
LAR with two public simulated environments with contin-
uous and discrete action spaces: Roboschool Hopper1 and
OpenAI Acrobot2. Our experimental results demonstrate
that MULTIPOLAR allows a new agent to learn its pol-
icy significantly faster on average compared to when it is
trained from scratch.

2. Proposed Method
Preliminaries We formulate our policy aggregation prob-
lem under the standard Reinforcement Learning (RL)
framework, where an agent interacts with its environment
modeled by a Markov Decision Process (MDP). An MDP
is represented by a 6-tuple (ρ0, γ, S,A, R, T ) where ρ0 is
the initial state distribution and γ ∈ (0, 1] is the discount

1https://github.com/openai/roboschool
2https://gym.openai.com/envs/Acrobot-v1



Figure 2: Example learning curves for Acrobot and Hopper averaged over trials. The shaded area represents 1 standard error.

factor. At each timestep t, given the current state st ∈ S,
the agent executes an action at ∈ A based on its policy
πθ(at|st) which is parameterized by θ. The environment
returns a reward rt = R(st, at) and transitions to the next
state st′ based on the environment state transition distribu-
tion T (st′ |st, at). In this framework, RL aims to maximize
the expected return with respect to the policy parameters θ.
In this work, we use ε to denote a particular environment
such as Hopper which the agent is interacting with and εi
to denote different unknown environmental dynamics for
that particular environment ε. Specifically, ρ0, γ, S,A, R
are the same for εis but the state transition distribution
Ti(st′ |st, at) is different.

Problem statement Given an environment ε and a li-
brary (set) of K deterministic source polices L =
{µ1, µ2, ..., µK}, where each µi is acquired from εi,
quickly learn an optimal policy πθ for εtarget by exploit-
ing knowledge from L. Each source policy µi can be pa-
rameterized (e.g. learned from interacting with an environ-
ment) or non-parameterized (e.g., heuristically designed by
humans). Either way, we assume no prior knowledge about
the representations of µi (e.g. their network architectures)
as well as their environmental dynamics and we only have
access to their predicted deterministic actions ai,t = µi(st).
Moreover, µi’s are not necessarily optimal on the εi they
were acquired from.

Policy aggregation Our proposed MULTIPOLAR policy
network πθ, illustrated in Figure 1, aims at improving sam-
ple efficiency of training an agent on a particular environ-
ment with unknown dynamics εtarget by leveraging knowl-
edge from L. The main idea is to learn how useful each ac-
tion of each source policy is for εtarget by learning a state-
independent scale vector θwi

for each source policy µi. To
ensure the optimality of MULTIPOLAR policy, a residual
policy fθb is learned around the average of scaled source
actions. Specifically, the mean actions at timestep t is:

uθ(st) = fθb(st) +
1

K

K∑
i=1

θwi
� µi(st) (1)

where θ = {θb, θw1 , . . . , θwK
}. uθ(st) is the estimated

mean of a multivariate Gaussian distribution (for continu-
ous action space environments) or a categorical distribution

(for discrete action space environments) and final actions
are sampled from the corresponding distribution. MULTI-
POLAR can be trained with any model-free policy gradient
methods given that we can take the gradient of policy per-
formance with respect to θ.

3. Experiments
We aim to empirically demonstrate the importance of ag-

gregating source policies for achieving training sample ef-
ficiency. We evaluate the effectiveness of MULTIPOLAR
with four source policies (K = 4) on Hopper with contin-
uous action space and Acrobot with discrete action space.
In both environments we compare MULTIPOLAR policy
to the standard MultiLayer Perceptron (MLP) policy net-
work typically used in RL. To have a fair comparison, both
baseline MLP and MULTIPOLAR are trained with Proxi-
mal Policy Optimization algorithm [3] with the same hy-
perparameters and same network size for MLP and fθb .

Results In both Hopper and Acrobot experiments, we de-
signed 100 target environments by randomly sampling the
environmental dynamics parameters such as links length
and mass. For each target environment, we trained MUL-
TIPOLAR three times with different sets of source poli-
cies acquired from random εi’s. Each training was done
three times with different random seeds. Figure 2 shows the
learning curves of MULTIPOLAR policy (averaged over 3
choices of source policies × 3 random seeds = 9 trials) and
that of the baseline policy (averaged over the same 3 random
seeds) for different εtarget’s. It clearly shows that MULTI-
POLAR outperforms the baseline in terms of sample effi-
ciency and sometimes the final episodic reward. It is also
noteworthy that MULTIPOLAR learning curves are signifi-
cantly more consistent across different trials, given that their
standard errors are much smaller than the baseline.
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